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Abstract. A complex and varied terrain has a great impact on the distribution of wind energy resources, resulting in uncertainty 

in accurately assessing wind energy resources. In this study, three wind speed distributions of kernel, Weibull, and Rayleigh 

type for estimating average wind power density were first compared by using meteorological tower data from 2018 to 2020 15 

under varied desert steppe terrain contexts in northern China. Then three key parameters of scale factor (c) and shape factor 

(k) from the Weibull model and surface roughness (z0) were investigated for estimating wind energy resource. The results 

show that the Weibull distribution is the most suitable wind speed distribution over that terrain. The scale factor (c) in the 

Weibull distribution model increases with an increase in height, exhibiting an obvious form of power function. While there 

were two different forms for the relationship between the shape factor (k) and height: i.e., the reciprocal of the quadratic 20 

function and the logarithmic function, respectively. The estimated roughness length (z0) varied with the withering period, the 

growing period, and the lush period, which can be represented by the estimated median value in each period. The maximum 

and minimum values of surface roughness length over the whole period are 0.15 m and 0.12 m, respectively. The power-law 

model and the logarithmic model are used to estimate the average power density values at six specific heights, which show 

greater differences in autumn and winter, and smaller differences in spring and summer. The gradient of the increase in average 25 

power density values with height is largest in autumn and winter, and smallest in spring and summer. Our findings suggest 

that dynamic changes in three key parameters (c, k, and z0) should be accurately considered for estimating wind energy 

resources under varied desert steppe terrain contexts. 

1 Introduction 

Wind energy is a renewable, environmentally friendly, and popular alternative source of clean energy (Islam et al., 2013; 30 

Gabbasa et al., 2013) and as a source of power it has a great potential (Chaurasiya et al., 2019). 93 GW of new installations 
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brought global cumulative wind power capacity up to 743 GW in 2020. In the onshore market, 86.9 GW was installed, an 

increase of 59% compared to 2019. China and the United States remain the world’s largest markets for new onshore 

installations (2021). To use this kind of nonpolluting energy, a lot of research has been conducted through a variety of different 

methods to develop an accurate and reliable wind energy evaluation model.  35 

The wind speed probability density function can effectively characterize wind speed. Therefore, the wind speed probability 

density function is of great significance in wind turbine site selection, wind farm design, generator design, determination of 

the dominant wind direction, and evaluation of wind conversion system management and operation (Masseran, 2015; Li and 

Shi, 2010). Wind shows great differences with various topographies, landforms, and meteorological conditions. The magnitude 

and direction of the wind speed exhibit significant differences when wind flows over rough ground or obstacles in a complex 40 

terrain. In addition, the surface topography and roughness of the area around the location of the wind measurement tower will 

affect the predicted wind resources (Kim and Lim, 2017). Therefore, the wind speed probability density function and roughness 

are important input factors in the estimation of wind energy power density. 

Different distribution functions have different fitting effects on the actual wind speed values in different study areas. According 

to previous studies (Lo Brano et al., 2011; Celik, 2004; Masseran et al., 2012), seven wind probability density functions have 45 

been widely used to fit the actual wind speed values: i.e., Weibull, Rayleigh, Lognormal, Gamma, Inverse Gaussian, Pearson 

type V, and Burr. These models exhibited different advantages and disadvantages for estimating wind probability density. For 

instance, (Celik, 2004) used the Weibull and Rayleigh models to perform a statistical analysis of wind energy density in 

southern Turkey and found that the Weibull model not only fits the measured monthly probability density distribution better 

but also provides better power density estimation compared to the Rayleigh model. (Masseran et al., 2012) used nine different 50 

wind speed probability density function models to describe wind speed conditions in different regions of Malaysia and found 

that Gamma, Weibull, and Inverse gamma models can fit the wind speed data better. (Chang, 2011a) used six different 

probability density functions: namely Weibull, mixture Gamma and Weibull, mixture normal, mixture normal and Weibull, 

mixture Weibull, and maximum entropy principle distribution. They were tested on the wind data of three wind farms in 

Taiwan and it was found that, when the current wind speed distribution is unimodal, the fitting effects of these six probability 55 

density functions are not significantly different. When the wind speed distribution is bimodal, the other five probability density 

functions are better than Weibull at describing wind characteristics. In addition, many other probability density functions have 

been invented to provide more accurate results for the estimation of wind power density in a specific area (Masseran, 2015; 

Carta et al., 2009; Jaramillo and Borja, 2004). 

Among the above-mentioned various types of wind speed probability density functions, the Weibull and Rayleigh distributions 60 

are still the more traditional and widely applicable typical wind speed distribution forms. The key issue in the study of the 

Weibull distribution is how to accurately determine the values of Weibull scale factor c and shape factor k (Azad et al., 2014; 

kaplan, 2017). Generally, six different methods, i.e., graphical method (Basu et al., 2009), empirical method (Costa Rocha et 

al., 2012; Kaoga et al., 2014), maximum likelihood method (Andrade et al., 2014; Azad et al., 2014), energy trend method 

(Chang, 2011b; Akdağ and Dinler, 2009), energy pattern method (Andrade et al., 2014), and the moment method (Azad et al., 65 
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2014; kaplan, 2017; Costa Rocha et al., 2012), have been employed to calculate the c and k of the Weibull distribution model. 

But these methods perform differently in different regions. For instance, (kaplan, 2017) found that the energy pattern method 

and the moment method were the best methods between 2009 and 2013 in the Hatay and Osmaniye regions. When the time 

series of wind data is provided, the maximum likelihood method is more robust and accurate than other methods (Seguro and 

Lambert, 2000; George, 2014). In addition, there is a strong time dependence and a high change dependence for the changes 70 

in shape factor k and scale factor c (Lun and Lam, 2000; Justus and Mikhail, 1976): e.g., the scale factor c has a power-law 

functional relationship with height and the shape factor k has a reciprocal logarithmic functional relationship with height. 

Therefore, we can explore its general laws by studying the seasonal changes and height changes in shape and scale parameters 

in a specific area.  

Roughness length plays a key role in estimating wind energy resources. For example, (Laporte, 2010) pointed out that the 75 

roughness estimation error can cause 5% to 10% of the wind energy resource estimation error. Current wind energy resource 

assessment is based on measured wind data at a height of 60 to 80 m from the ground, but the actual height of the hub may be 

greater than these heights. Therefore, we need to combine the surface roughness length and the known wind speed value of 

the measured height to extrapolate the wind speed value at the height of the hub (Nayyar and Ali, 2020). Theoretically, the 

surface roughness length z0 is the height at which the average wind decreases to zero with height. z0 varies with the underlying 80 

surface (Davenport et al., 2000; Duan et al., 2021). Currently, three approaches (the analysis method, the Charnock method, 

and the statistical method) have been widely applied to estimate the surface roughness length of offshore wind energy (Golbazi 

and Archer, 2019). Among them, the statistical method is convenient, as it needs only three layers of wind speed data. After 

comparing the average value and median value of roughness z0, it is found that the median value is an order of magnitude 

closer to the roughness length calculated from the other two methods. Therefore, when using the field measurement method 85 

to statistically determine the surface roughness length, attention should be paid to using the median value instead of the average 

value; otherwise huge errors will be generated when the wind speed is extrapolated to the height of the hub, which will have a 

huge impact on the evaluation of wind energy resources. 

As an important production base of wind power energy in northern China, Inner Mongolia is under the influence of the westerly 

wind all year round. The types of underlying surfaces of wind power towers in China are complex and diverse, including 90 

offshore, mountainous, urban outskirts, and grasslands. In Inner Mongolia, especially the desert grassland, the terrain is open, 

the vegetation is low and sparse, and its wind resources are very rich. So taking the Ningyuanbailiutu site as an example, in-

depth data mining was carried out on the 4 heights of 10 m, 30 m, 50 m, and 70 m for the meteorological element data of a 

100-meter wind tower from the autumn of 2018 to the summer of 2020 in Damaoqi, Baotou City, Inner Mongolia, China. The 

following three steps are used to study the three important key parameters that affect the evaluation of wind energy resources: 95 

the surface roughness length z0, the scale factor c, and the shape factor k in the Weibull distribution function. Firstly, we need 

to determine the uniqueness and importance of the Weibull distribution function in the wind speed time series data in the 

Damaoqi area. This is reflected in the advances and shortcomings of the kernel distribution model, the Rayleigh distribution 

model, the Weibull distribution function, and the frequency distribution model using actual wind speed, which are used to 
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calculate the monthly, seasonal, and all-time average power densities. Secondly, by studying the monthly and seasonal changes 100 

in the surface roughness length and the changes in different incoming flow directions, we will gain a comprehensive 

understanding of the roughness of the site area in Inner Mongolia. Finally, by using two different models, namely the power-

law model with scale parameter c and the logarithmic model with roughness information, the average wind power densities at 

six specific heights (75 m, 80 m, 85 m, 90 m, 95 m, and 100 m) per month, per season, and throughout the period are calculated. 

In this way, we discuss the application significance of the two models for wind energy development, and provide a scientific 105 

reference for a further understanding of the wind energy resources in the region. 

2 Study site, data, and methods 

2.1 Study site and data 

In this study, long-term in-situ measurement was conducted in Damaoqi, Baotou City, Inner Mongolia (42°04'25.738"N, 

110°29'2.778"E; 1376 m above sea level) from September 1, 2018 to August 31, 2020 (Figure 1). The observation wind tower 110 

is located at the northern foot of Daqing Mountain in the central area of the Inner Mongolia Plateau. Wind speed and wind 

direction (010C cup anemometers and 020C wind vanes, Metone, USA), atmospheric pressure (CS106 Campbell, USA), air 

temperature, and humidity (HC2-S3, Rotronic, Switzerland) were measured at 4 levels (i.e., 10 m, 30 m, 50 m, and 70 m) of 

the tower. It is surrounded by typical desert grassland. The site is characterized by a middle temperate zone and semi-arid 

continental climate. During the experimental period, the daily air temperature ranged between −27.3 ℃ and 33.9 ℃, with an 115 

average value of 6.3 ℃ (Figure 2a). Surface-level air pressure has an inverse relation with air temperature, with an average 

value of 862.9 hPa (Figure 2b). In addition, the daily average relative humidity maintains a level of 41.02% and fluctuates 

back and forth. The average wind speed at the 70-m height is 7.61 m/s. The average daily wind speed in spring and autumn 

occasionally exceeds the level of 10 m/s, indicating that the site has sufficient wind resources in these two seasons (Figure 2c). 

The predominant wind direction was southwesterly and northwesterly during the whole observation period (Figure 2d and 120 

Figure 3). 

2.2 Methods 

2.2.1 Kernel, Weibull, and Rayleigh distributions 

The kernel density estimator is the estimated probability density function (PDF) of a random variable. For any real values of 

v, the formula for the kernel density estimator is given by: 125 
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where v1, v2, …, vi are random wind samples from an unknown distribution, n is the sample size, K(·) is the kernel smoothing 

function, and h is the bandwidth.  
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The probability density function of the Weibull distribution is given by: 
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The Rayleigh model is a special and simplified case of the Weibull model. It is obtained when the shape factor k of the Weibull 

model is assumed to be equal to 2. 

The maximum likelihood estimation method is a mathematical expression recognized as a likelihood function of the wind 

speed data in a time series format. In this method, a lot of numerical iteration can be required to determine the k and c 

parameters of the Weibull function. The parameter estimation formula of the maximum likelihood method is as follows: 135 
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The average value and standard deviation of the wind speed can be obtained from the following formulas: 
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respectively. 

Alternatively, the mean wind speed can be determined from: 

 
0
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if the probability density function is known. 

If Eq. (2.7) is solved together with Eq. (2.2) making the substitution of
 

( / )kv c   for v, the following is obtained for the 145 

mean wind speed: 
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Note that the gamma function has the properties of 
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2.2.2 Power density 

The mean power density for the kernel smoothing function becomes: 150 
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The mean power density for the Weibull function becomes: 
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The mean power density for the Rayleigh model is found to be: 

 
3 ,
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where ρ is the air density. 

2.2.3 Weibull parameters 

The relationship between scale factor c and height can be expressed as follows: 

 10/ ( /10 .)c c z   (2.12) 

Here c10 represents the scale factor at 10-m height, z represents the height, and   represents the power exponent parameter to 160 

be estimated.  

The relationship between scale factor k and height can be expressed as follows: 

 
2( /10) ( /10) ,k a z b z d    (2.13) 

where a, b , and d are unknown parameters to be fitted to the quadratic function. 

In addition, as shown in Figure 6c below, (Justus and Mikhail, 1976) gave the following formula for the shape factor k with 165 

height: 

 10 10/ 1 ln( /10)k k b z  , (2.14) 

where k10 is the shape factor at a reference height of 10 m. At a reference height of 10 m, b = b10 is just some constant, whose 

value can be determined by a least squares fit of relation (2.14) to the data. 

2.2.4 Surface roughness length 170 

When the wind speed at three or more heights is measured, the roughness length calculated by the least square regression 

(Archer and Jacobson, 2003; Archer, 2005; Golbazi and Archer, 2019) is: 
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where zR is the reference height, zi is the height of the other three layers, N = 4 which represents 4 vertical layers, and Ui is the 

wind speed corresponding to the height of the other three layers. In most cases, it is a purely mathematical statistical method, 175 

so this simple mathematical method does not require a physical explanation for roughness estimation. 

In addition, the above-mentioned method is obtained from the logarithmic wind speed profile, which is a typical form of wind 

speed profile under neutral stratification. A calculation of the wind speed at other altitudes under the reference altitude can be 

obtained from the following formula (Golbazi and Archer, 2019; Archer and Jacobson, 2003): 
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where z0 is the estimated surface roughness length, assuming that the friction speed near the ground does not change with 

height. 

3 Results and discussion 

3.1 Comparisons of kernel, Weibull, and Rayleigh models 

There are various statistical distribution functions for describing and analyzing wind data, including normal, lognormal, 185 

Rayleigh, and Weibull probability distributions (Fagbenle et al., 2011; Ozerdem and Turkeli, 2003). It has been found that the 

Weibull and Rayleigh distributions are the most accurate and adequate in wind analysis and in interpreting the actual wind 

speed data and in predicting the characteristics of the prevailing wind profile. A kernel distribution is a nonparametric 

representation of the PDF of a random variable. A kernel distribution is defined by a smoothing function and a bandwidth 

value, which control the smoothness of the resulting density curve (Kafadar et al., 1999). In fact, some scholars have used the 190 

probability density distribution of wind speed to compare the advantages and disadvantages of the Weibull distribution and 

the Rayleigh distribution (Celik, 2004). However, in the present study, by quoting the kernel function distribution close to the 

actual distribution as a reference, two specified distribution functions are being compared with the kernel function to find out 

which one can better predict the wind speed data in the area. 

The monthly, seasonal, and annual average wind speed values and standard deviations calculated using Eqs. (2.5) and (2.6) 195 

for the available time series data are shown in Table 1. It can be seen from Table 1 that the highest average wind speeds 

occurred in May and December 2019 and in May 2020, and the lowest average wind speeds occurred in February and August 

2019. Over about two years, it was found that the average wind speed in the spring of 2019 and 2020 was higher, and the 

average wind speed in the summer of 2019 and 2020 was lower. During the entire experimental period, the average wind speed 
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values at 10 m, 30 m, 50 m, and 70 m were 6.02 m/s, 6.78 m/s, 7.25 m/s, and 7.61 m/s, respectively, which also shows that the 200 

wind speed value increases with an increase in altitude. 

Figure 4 shows the frequency density histogram of the wind speed at 70 m for about two years and the probability density 

curves of the Weibull, kernel, and Rayleigh distributions. First of all, it is obvious from the frequency histogram that the wind 

speed at 70 m fluctuated drastically in the autumn of 2018, spring of 2019, and summer of 2020. This conclusion can also be 

well explained from Table 1. The shape factor k values of these three specific seasons are 2.18, 2.13, and 2.11 respectively, 205 

which are slightly higher than the shape factor k value of the Rayleigh distribution. In combination with Table 1, it is also 

found that the higher the value of the scale factor c, the smoother the three specific probability distribution curves. In contrast, 

as shown in Figure 4d, its three specific probability density curves are very sharp. Finally, when these three specific probability 

density curves are fitted to the original wind speed data, the kernel distribution fitting the original wind speed data is not only 

the change trend or probability density estimate, but it is closer to the actual frequency distribution. 210 

Although the kernel distribution also has specific parameters to control its probability density curve, it does not have the 

general form of wind speed distribution. Moreover, the k value of the Weibull distribution is ~2. To select the specific wind 

speed distribution form suitable for the Ningyuanbailiutu site, therefore, the model prediction accuracies of the Weibull 

distribution and the Rayleigh distribution for average wind power need to be further compared. 

In the present study, the differences between the kernel distribution, Weibull distribution, and Rayleigh distribution are 215 

explored when calculating the average wind power density and the frequency distribution using the original wind speed data. 

The root mean square errors (RMSEs) of the kernel distribution, Weibull distribution, and Rayleigh distribution are 45.75 

W/m2, 60.53 W/m2, and 875.34 W/m2, respectively. The Weibull and kernel models return smaller error values in calculating 

the mean power density compared to the Rayleigh model. The mean power density is estimated by the Rayleigh model to have 

a very large absolute error value of 83.12 W/m2 in December 2019. On the other hand, the highest absolute error value occurs 220 

in May 2019 with 21.28 W/m2 for the Weibull model. The two-year average absolute percentage error values in calculating 

the mean power density using the kernel, Weibull, and Rayleigh functions are 1.17%, 1.05%, and 4.20%, respectively. 

The mean power densities calculated from the measured probability density distributions and those obtained from the models 

are shown in Figure 5. The mean power density shows significant monthly and seasonal variation. The minimum average 

power density appeared in August 2019 and was only 214.92 W/m2. In addition, smaller mean wind power densities appeared 225 

in July and September 2019 and January, July, and August 2020, which were generally lower than 350 W/m2. Generally, the 

maximum value of monthly mean wind power density reached 862.39 W/m2 in May 2019, and the seasonal mean wind power 

density peaked in spring 2020.  

Although the mean wind power density calculated in this study is in good agreement with the actual grid-connected average 

power density assumed (Figure 5a), there is significant difference between the two values. This is because the wind turbines 230 

are not connected to the grid due to failures, or other wind turbines are not within the range of the wind measurement tower. 

As a result, the wind measured by a single wind tower will underestimate the wind speed of other wind turbines. 
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Analysis of residual error and average percentage error suggests that the average wind power density estimated by the Weibull 

distribution with specific parameter control is very similar to the kernel distribution, which is closest to the original wind 

frequency distribution (Figure 5c). The lower limit of the 95% prediction interval is each predicted value minus 1.96 standard 235 

deviations, and the upper limit is each predicted value plus 1.96 standard deviations (Figures 5b–d). This suggests that the 

interval applicability of the three specific distribution models is good. In general, we found that Weibull distribution is 

applicable for checking the wind speed distribution of the Ningyuanbailiutu site. 

3.2 Vertical characteristics of Weibull parameters 

Figure 6 shows the characteristic variation of the scale factor c and the shape factor k with height estimated from the Weibull 240 

distribution for original wind speed data during the study period, exhibiting power exponential and quadratic function 

variations, respectively. 

Table 2 gives in detail the values of  , a, b , d, and b10 obtained by the least squares fitting method for each month, each 

season, and all time periods, and the corresponding RMSEs obtained from the formula. When using the power exponent 

formula (2.12) to fit the relationship between the scale factor c and the height, the RMSE has the smallest values in January 245 

2019 and July and August 2020. However, in December 2019, January 2020, and February 2020 it has the largest values. This 

shows that formula (2.12) has a better fitting effect in the winter of 2018, and a poor fitting effect in the winter of 2019. (Justus 

and Mikhail, 1976) found that the mean value of   was 0.23. In the present study, the mean value of a for each month over 

the two whole years is 0.117, and the corresponding standard deviation is 0.016. 

Figures 6b and 6c indicate that the two different formula forms have a good fitting relationship for shape factor k and height. 250 

The RMSEs of Table 2 also suggest that the effect of the quadratic function fitting is better than the logarithmic reciprocal 

function of (Justus and Mikhail, 1976). The RMSE of the quadratic function fitted to all data for two whole years is 0.0078, 

but the RMSE of the logarithmic reciprocal function is 0.0214, which is close to a multiple of 1:3. Both these two types of 

formula are basically applicable only to heights below 100 m. In addition, from a comparison of Figures 6b and 6c, it can be 

seen that there will be some different trends in the change in the k value with height, and the increasing or decreasing speed of 255 

the k value in the form of a quadratic function will be higher than that found by (Justus and Mikhail, 1976) when the height is 

greater than 70 m. This different trend will lead to large errors in estimating wind energy resources above 70 m. Therefore, it 

is necessary to intensively observe wind speeds above 70 m and below 100 m in future research, in order to establish a specific 

function of k varying with height applicable to the site. 

3.3 Spatial–temporal variations in surface roughness length 260 

The shape of the wind profile is greatly affected by the surface roughness in the direction of the incoming flow. Thus, surface 

roughness is a key element in wind energy resource evaluation and forecasting models. In calculating aerodynamic roughness, 
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especially in practical applications, the least squares approximation of the logarithmic profile equation to the measured wind 

speed profile method has been widely used, referred to as the logarithmic profile method.  

After calculating the 15-minute continuous wind speed data using the above method, quality control of the data is carried out. 265 

In this study, we have eliminated wind speeds greater than or equal to 6 m/s at 50 m, and the estimated abnormal roughness 

data is infinitely large or infinitely small. Figure 7 shows that both the average and median monthly roughness length in January, 

February, and March 2019 are significantly less than those in August, September, and October 2019. The largest value of 

median roughness was close to 0.19 m in October 2019, and the maximum value of average roughness was approximately 

equal to 0.27 m. In June 2020, the median and average roughness values reached 0.18 m and 0.25 m, respectively. The 270 

minimum value of median roughness was about 0.10 m in January 2019, and the smallest value of average roughness value 

was about 0.20 m in January 2020. 

In addition, the median and average roughness length were lowest at about 0.12 m and 0.22 m in the winter of 2018 and 2019, 

while the highest were about 0.15 m and 0.25 m in the autumn of 2019. It is notable that the roughness length steadily increases 

from winter to autumn. In short, this suggests that the grassland vegetation in the site area has an obvious wilting period, 275 

growing season, and lush period. Compared with the average roughness length, the representative roughness length of the area 

fitted the median value more closely. 

According to the Davenport land type roughness classification (Davenport et al., 2000) and summary of roughness length over 

the wind-tower sites and the corresponding types (Li et al., 2021), in the case of land types with less vegetation and cropland, 

the roughness length is generally estimated to be a slightly rough open area of about 0.10 m. The area we studied belongs to 280 

the grassland vegetation type, and the roughness estimate should be around 0.13 m, and it will not be classified as rough; that 

is, the roughness length is as high as 0.25 m. In addition, in a study (Golbazi and Archer, 2019) on the estimation of sea surface 

roughness length in coastal waters, it is mentioned that the statistical method uses a single constant value of z0 in the 

representative area, and the median value can be worth recommending. 

Figure 8 shows the variation in the estimated roughness length in 12 different incoming wind directions. When the wind 285 

direction is 120° or 240°, the estimated roughness length is highest, and the median value and average value are about 0.23 m 

and 0.30 m, respectively. Secondly, when the wind direction is 30° or 300°, the estimated roughness length is lowest, and the 

median value and average value are about 0.08 m and 0.18 m, respectively. Therefore, between the highest and lowest 

estimated roughness lengths, there is a specific trend of increasing or decreasing. The above phenomenon can be explained in 

conjunction with Figure 1 and Figure 3. There is a hillside to the west of the wind tower. Therefore, when the incoming wind 290 

direction is 120° or 240°, it is on the windward side or leeward side, respectively, of the wind measuring tower. In this way, 

there will be a pressure difference, which will increase friction loss and increase the estimate of the effective roughness length. 

When the incoming wind direction is 30° or 330°, it is found that the wind passing through the wind measurement tower will 

not be greatly affected by the terrain. The terrain is relatively flat, and the estimated roughness length is close to the normal 

value of 0.10 m. In addition, in the plot of roughness length estimation with wind direction, there are obviously more data 295 
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points in the wind directions from 180° to 330° than in the other wind directions. The 240° wind direction has the most data 

points, which also shows that the site has a southwesterly wind blowing all year round. 

3.4 Extrapolation of the average wind power density 

With the scale factor c changing with height in the form of a power function, and shape factor k changing with height in the 

form of a quadratic function, the scale factor c and the shape factor k at 75 m, 80 m, 85 m, 90 m, 95 m, and 100 m are calculated. 300 

Then the average wind power density (Figure 9b) is calculated for each month, each season, and the whole time period from 

formula (2.10). On the other hand, when studying the roughness length parameter in the previous section, we assume that the 

roughness length calculated from the four-layer height is constant. Then through the logarithmic form of formula (2.16), we 

can calculate the wind speed values at 75 m, 80 m, 85 m, 90 m, 95 m, and 100 m every 15 minutes. Finally, the “reference 

average power density” (Figure 9a) at six specific heights can also be obtained. 305 

Both the power-law model and the logarithmic model can estimate the average wind power density of six specific heights, and 

it can be found from Figure 9 that the values estimated by the two methods show greater differences in autumn and winter, 

and smaller differences in spring and summer. In addition, the two different models both show that the average power density 

values are largest in spring and smallest in summer. Although the average power density values increased with height over the 

whole experiment, the gradient of the increase in average power density values with height is largest in autumn and winter, 310 

and smallest in spring and summer. Generally speaking, the difference between the estimated average power density values is 

very small. However, the data and methods used in the estimation of the two models are different. The result of this estimation 

gives us important guidance for studying two Weibull parameters, namely the scale factor c and the shape factor k, and the 

surface roughness length parameter. 

4. Conclusions 315 

The present work investigated the scale factor c and the shape factor k that affect the Weibull distribution of wind speed, by 

directly estimating the energy potential of the wind speed resource at four different heights, and the surface roughness length 

parameter which directly affects the shape and law of the wind profile. The main conclusions are given as follows:  

The two-year average absolute percentage error values in calculating the mean power density using the kernel, Weibull, and 

Rayleigh functions are 1.17%, 1.05%, and 4.20%, respectively. The Weibull wind speed distribution model is the most suitable 320 

wind speed distribution model for the Ningyuanbailiutu site. The scale factor c increases with an increase in height, showing 

an obvious form of power function. The shape factor k increases or decreases with height and has two different forms, which 

are the reciprocal of the quadratic function and the logarithmic function. For the further determination of the changes in form 

factor with height, in the future, it will be necessary to conduct intensive observations for heights above 70 m and below 100 

m. 325 

https://doi.org/10.5194/amt-2021-375
Preprint. Discussion started: 1 December 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

When estimating the surface roughness length, the median value is selected as the representative value of the surface roughness 

length. This is based not only on recognition of actual previous research, but also on confirmation of actual grassland vegetation 

types. Although the statistically calculated z0 does not have a proper physical explanation, it gives the most accurate wind 

speed estimate at the required height. The estimated roughness length varies with the seasons of the grassland vegetation at 

the site. The estimated roughness lengths of the wilting period, growing season, and lush period are about 0.12 m, 0.13 m, and 330 

0.15 m, respectively. The estimated surface roughness length will be affected by the windward and leeward sides. When the 

wind flows across the hillside, there will be a pressure difference, which will increase the friction loss and increase the 

estimated effective roughness length. The prevailing wind direction at this site is 240°, which happens to be the direction of 

the windward side of the site. The estimated roughness length is about 0.23 m. Finally, the power-law model and the 

logarithmic model were employed to estimate the average power density values at 75 m, 80 m, 85 m, 90 m, 95 m, and 100 m. 335 

The two models show greater differences in autumn and winter, and smaller differences in spring and summer. The gradient 

of the increase in average power density values with height is largest in autumn and winter, and smallest in spring and summer. 

In general, under a carbon-neutral background, the determination of the potential for economical and clean wind energy 

resources is an important scientific issue in the development of renewable energy worldwide. Our research has determined the 

possible relationship between Weibull natural wind mesoscale parameter c and shape factor k with height under the conditions 340 

of a desert steppe terrain in northern China, which has great potential in wind power generation, but there is a lack of 

comprehensive investigations into key parameters for estimating wind power density from tower data. In the present study, we 

have gained an enhanced understanding of the seasonal changes in the surface roughness of the desert grassland and the 

changes in the incoming wind direction. Our findings also have important implications for the assessment of wind energy 

resources for the establishment of new wind farms in areas experiencing varied desert steppe terrains throughout the world. 345 
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Table 1: Calculated monthly, seasonal, and annual distribution parameters based on the time series wind speed data measured 

every 15 minutes from Damaoqi Wind Tower. 

 

 
10 m 30 m 50 m 70 m 

vm σ c k vm σ c k vm σ c k vm σ c k 

Sep 2018 6.34 3.13 7.14 2.09 7.15 3.48 8.02 2.09 7.65 3.55 8.60 2.23 8.05 3.67 9.06 2.30 

Oct 2018 5.84 3.41 6.56 1.77 6.66 3.77 7.47 1.81 7.16 3.89 8.06 1.91 7.52 4.04 8.48 1.95 

Nov 2018 6.32 2.80 7.11 2.35 7.25 3.22 8.14 2.33 7.83 3.39 8.79 2.40 8.27 3.65 9.29 2.36 

Dec 2018 6.55 3.01 7.36 2.25 7.48 3.37 8.40 2.31 8.02 3.58 9.00 2.34 8.41 3.82 9.43 2.28 

Jan 2019 6.14 2.66 6.89 2.40 6.96 2.96 7.81 2.45 7.40 3.13 8.31 2.49 7.68 3.35 8.62 2.40 

Feb 2019 5.05 3.57 5.57 1.45 5.48 3.98 6.00 1.39 5.73 4.20 6.28 1.39 5.95 4.37 6.54 1.40 

Mar 2019 6.38 3.03 7.16 2.16 7.20 3.42 8.08 2.17 7.66 3.59 8.61 2.21 8.02 3.72 9.03 2.27 

Apr 2019 6.42 3.43 7.19 1.89 7.19 3.85 8.06 1.88 7.78 4.05 8.75 1.98 8.17 4.22 9.22 2.02 

May 2019 7.19 3.81 8.12 1.97 8.08 4.10 9.11 2.05 8.65 4.26 9.76 2.12 9.02 4.39 10.20 2.17 

Jun 2019 5.94 2.87 6.70 2.17 6.68 3.14 7.53 2.23 7.19 3.30 8.10 2.29 7.55 3.45 8.52 2.32 

Jul 2019 5.00 2.84 5.60 1.78 5.57 3.25 6.21 1.70 6.08 3.47 6.80 1.77 6.39 3.56 7.17 1.83 

Aug 2019 4.44 2.39 4.98 1.87 4.96 2.67 5.54 1.84 5.41 2.74 6.07 2.02 5.70 2.82 6.43 2.11 

Sep 2019 5.26 2.40 5.90 2.25 6.06 2.78 6.78 2.24 6.58 2.91 7.39 2.37 7.00 3.02 7.87 2.47 

Oct 2019 6.00 3.33 6.72 1.83 6.83 3.76 7.64 1.82 7.40 4.00 8.30 1.88 7.84 4.14 8.82 1.96 

Nov 2019 6.51 3.55 7.31 1.88 7.43 3.96 8.32 1.89 7.94 4.10 8.94 2.00 8.38 4.23 9.46 2.08 

Dec 2019 6.89 2.84 7.72 2.56 7.82 3.30 8.75 2.48 8.46 3.49 9.48 2.59 8.98 3.67 10.07 2.64 

Jan 2020 5.37 2.71 6.03 2.01 5.69 3.21 6.34 1.76 6.03 3.40 6.74 1.79 6.31 3.62 7.07 1.79 

Feb 2020 6.34 3.29 7.09 1.93 7.11 3.63 7.97 1.99 7.60 3.91 8.51 1.97 8.09 4.03 9.10 2.08 

Mar 2020 6.65 3.21 7.48 2.14 7.60 3.49 8.54 2.26 8.10 3.65 9.12 2.34 8.56 3.74 9.64 2.44 

Apr 2020 5.66 3.44 6.30 1.64 6.36 3.68 7.10 1.74 6.72 3.88 7.52 1.75 7.12 3.97 8.01 1.85 

May 2020 6.88 3.82 7.72 1.84 7.63 4.10 8.56 1.90 8.06 4.25 9.05 1.94 8.39 4.36 9.44 1.99 

Jun 2020 6.53 2.95 7.34 2.29 7.25 3.30 8.15 2.27 7.58 3.51 8.53 2.25 7.88 3.67 8.89 2.26 

Jul 2020 5.35 2.70 6.01 2.04 6.04 2.96 6.79 2.10 6.35 3.07 7.14 2.14 6.61 3.23 7.44 2.12 

Aug 2020 5.35 2.74 6.01 2.00 6.09 3.06 6.83 2.03 6.43 3.21 7.21 2.04 6.69 3.35 7.51 2.04 

2018 

autumn 
6.16 3.14 6.94 2.03 7.02 3.51 7.88 2.05 7.54 3.63 8.49 2.15 7.94 3.80 8.94 2.18 

2018 

winter 
5.94 3.15 6.67 1.92 6.68 3.54 7.49 1.91 7.09 3.76 7.96 1.91 7.39 3.98 8.29 1.88 

2019 

spring 
6.67 3.46 7.49 1.98 7.49 3.82 8.42 2.01 8.03 4.00 9.04 2.08 8.41 4.14 9.49 2.13 

2019 

summer 
5.12 2.78 5.74 1.88 5.73 3.11 6.41 1.85 6.22 3.27 6.98 1.95 6.54 3.38 7.37 2.01 
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2019 

autumn 
5.92 3.18 6.65 1.90 6.77 3.58 7.59 1.91 7.31 3.75 8.22 2.00 7.74 3.88 8.73 2.08 

2019 

winter 
6.20 3.02 6.95 2.10 6.87 3.49 7.69 1.98 7.36 3.74 8.25 2.00 7.79 3.93 8.76 2.04 

2020 

spring 
6.41 3.54 7.18 1.84 7.20 3.81 8.08 1.92 7.64 3.98 8.58 1.96 8.03 4.08 9.05 2.04 

2020 

summer 
5.73 2.85 6.45 2.07 6.45 3.16 7.25 2.10 6.78 3.31 7.62 2.11 7.05 3.47 7.94 2.11 

Whole 

period 
6.02 3.18 6.76 1.94 6.78 3.55 7.60 1.94 7.25 3.73 8.14 2.00 7.61 3.88 8.57 2.03 
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Table 2. The values of various parameters in different time periods and the corresponding root mean square errors (RMSEs) 445 
under least squares formula fitting. 

   RMSE_c a b  d RMSE_k b10 

RMSE_k 

(Justus and 

Mikhail, 

1976) 

Sep 2018 0.1180 0.0672 0.0040 0.0065 2.0692 0.0245 −0.0372 0.0500 

Oct 2018 0.1293 0.0493 −0.0008 0.0382 1.7233 0.0141 −0.0434 0.0242 

Nov 2018 0.1339 0.058 −0.0009 0.0133 2.3262 0.0204 −0.0050 0.0216 

Dec 2018 0.1260 0.0296 −0.0070 0.0615 2.1956 0.0079 −0.0136 0.0268 

Jan 2019 0.1154 0.0095 −0.0091 0.0748 2.3257 0.0105 −0.0114 0.0371 

Feb 2019 0.0782 0.0468 0.0042 −0.0409 1.4844 0.0061 0.0238 0.0136 

Mar 2019 0.1165 0.0404 0.0027 −0.0034 2.1569 0.0015 −0.0183 0.0226 

Apr 2019 0.1221 0.0972 0.0029 0.0004 1.8797 0.0171 −0.0253 0.0340 

May 2019 0.1148 0.0559 −0.0019 0.0483 1.9256 0.0040 −0.0432 0.0139 

Jun 2019 0.1195 0.0652 −0.0019 0.0399 2.1315 0.0024 −0.0312 0.0092 

Jul 2019 0.1207 0.1040 0.0090 −0.0608 1.8252 0.0163 0.0011 0.0476 

Aug 2019 0.1245 0.0945 0.0076 −0.0171 1.8682 0.0328 −0.0409 0.0700 

Sep 2019 0.1432 0.0736 0.0072 −0.0185 2.256 0.0224 −0.0320 0.0607 

Oct 2019 0.1339 0.0928 0.0052 −0.0191 1.8402 0.0046 −0.0227 0.0356 

Nov 2019 0.1280 0.0667 0.0037 0.0062 1.8609 0.0149 −0.0392 0.0414 

Dec 2019 0.1304 0.1029 0.0081 −0.0481 2.5904 0.0255 −0.0051 0.0525 

Jan 2020 0.0729 0.1152 0.0153 −0.1547 2.1364 0.0366 0.0795 0.0503 

Feb 2020 0.1202 0.1037 0.0036 −0.0077 1.9484 0.0230 −0.0255 0.0329 

Mar 2020 0.1265 0.0519 −0.0017 0.0623 2.0806 0.0098 −0.0577 0.0193 

Apr 2020 0.1172 0.0726 0.0002 0.0316 1.6145 0.0207 −0.0522 0.0248 

May 2020 0.1006 0.0393 −0.0003 0.0260 1.8191 0.0015 −0.0327 0.0123 

Jun 2020 0.0963 0.0267 0.0019 −0.0222 2.3162 0.0042 0.0099 0.0063 

Jul 2020 0.1092 0.0145 −0.0056 0.0601 1.9787 0.0042 −0.0260 0.0153 

Aug 2020 0.1143 0.0122 −0.0022 0.0245 1.9728 0.0007 −0.0125 0.0047 

2018 autumn 0.1269 0.0581 0.0005 0.0235 1.9993 0.0189 −0.0307 0.0297 

2018 winter 0.1104 0.0247 −0.0009 0.0009 1.9214 0.0073 0.0083 0.0095 

2019 spring 0.1177 0.0634 0.0008 0.0194 1.9526 0.0070 −0.0311 0.0217 

2019 summer 0.1218 0.0891 0.0056 −0.0210 1.8881 0.0173 −0.0215 0.0435 
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2019 autumn 0.1346 0.0781 0.0046 −0.0049 1.8979 0.0122 −0.0333 0.0415 

2019 winter 0.1108 0.1087 0.0099 −0.0867 2.1701 0.0139 0.0265 0.0376 

2020 spring 0.1148 0.0542 −0.0003 0.0353 1.8061 0.0111 −0.0463 0.0183 

2020 summer 0.1059 0.0148 −0.0023 0.0246 2.0459 0.0005 −0.0110 0.0057 

Whole period 0.1178 0.0596 0.0020 0.0008 1.9305 0.0078 −0.0185 0.0214 
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Figure 1: (a) The observation site marked as a black spot in the Inner Mongolia Autonomous Region of China (the red line indicates 

the border of the Inner Mongolia Autonomous Region); (b) Terrain elevation map of the 28 km * 28 km grid; (c) Google satellite 450 
historical imagery of the 28 km * 28 km grid (from © Google Maps 2021); the red dots indicate wind turbines. 
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Figure 2: (a), (b), (c), (d), and (e) represent daily average temperature (℃), daily average pressure (hPa), 70-m daily average wind 

speed (m/s), 70-m daily average wind direction (°), and the average daily relative humidity (%), respectively. 455 
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Figure 3: The distribution of the high-altitude wind speed and direction rose diagram of the wind measurement tower of the 

Ningyuanbailiutu wind farm from September 2018 to August 2020. (a), (b), (c), and (d) represent 10 m, 30 m, 50 m, and 70 m in 

altitude, respectively. 460 
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Figure 4: Frequency density histogram of wind speed at 70-m height from autumn 2018 to summer 2020; the probability density 

curve obtained by fitting the Weibull, kernel, and Rayleigh distribution functions to the original data. (a), (b), (c), (d), (e), (f), and 

(h) represent each season, respectively. 465 
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Figure 5: (a) The average power density values calculated by the four distributions: the frequency distribution of the original wind 

speed time series data, the kernel distribution, the Weibull distribution, and the Rayleigh distribution, for each month, each season, 

and the total period of about 2 years. The dotted red line represents the actual grid-connected average power density when the fan 470 
blade length is assumed to be 41.5 m. (b), (c), and (d) represent the residual and 95% confidence interval under the three specific 

probability model distributions, respectively. 
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 475 

Figure 6: (a) The characteristic variation of scale factor c with height based on equation (2.12). The characteristic variation of shape 

factor k with height based on (b) equation (2.13) and (c) equation (2.14). 
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Figure 7: The average and median values of estimated roughness in each month for the total period. 480 
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Figure 8: The average and median values of estimated roughness in 12 different directions of incoming flow. 
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 485 

Figure 9: The logarithmic model (a) and power-law model (b) estimate the average wind energy density at six specific heights (75 m, 

80 m, 85 m, 90 m, 95 m, and 100 m) of the wind measurement tower in each month, for every season and over the whole period. 
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